Pengembangan Game Congklak Berbasis Kecerdasan Buatan Menggunakan Algoritma Alpha-Beta Pruning

Nurul Nabila¹, Dolly Virgian Shaka Yudha Sakti^{2*}

^{1,2} Teknik Informatika, Fakultas Teknologi Informasi, Universitas Budi Luhur, Jakarta, Indonesia Jl. Ciledug Raya, RT.10/RW.2, Petukangan Utara, Kec. Pesanggrahan, Jakarta Selatan, 12260 Email: ¹2011500267@budiluhur.ac.id, ^{2*}dolly.virgianshaka@budiluhur.ac.id (*: corresponding author)

Abstrak- Penelitian ini berfokus pada pengembangan game congklak berbasis kecerdasan buatan dengan implementasi algoritma Alpha-Beta Pruning dan metode ATUMICS, bertujuan untuk mengoptimalkan proses evaluasi pohon keputusan tanpa mengurangi akurasi hasil. Transformasi permainan congklak dari bentuk tradisional menjadi digital ini dirancang untuk mempertahankan serta memperkenalkan warisan budaya Indonesia melalui media interaktif yang mendidik. Hasil pengujian kualitas perangkat lunak menunjukkan bahwa game ini mencapai tingkat keberhasilan 81,9% dalam aspek kegunaan, yang dikategorikan sebagai "Sangat Baik". Respon pengguna yang positif mengindikasikan bahwa game ini tidak hanya menawarkan hiburan, tetapi juga berfungsi sebagai alat edukasi yang efektif, dengan kecerdasan buatan yang mendukung permainan yang dinamis dan menantang. Kontribusi utama dari penelitian ini adalah pengembangan teknologi untuk pelestarian budaya tradisional melalui media digital, sekaligus membuka peluang untuk penelitian lebih lanjut dalam penerapan kecerdasan buatan di bidang permainan digital. Temuan ini diharapkan dapat berperan penting dalam promosi dan pelestarian nilai-nilai budaya Indonesia di era digital.

Kata Kunci— Congklak, Kecerdasan Buatan, Alpha-Beta Pruning, Android Game Development, ATUMICS

Abstract—This research focuses on the development of an AIbased congklak game using the Alpha-Beta Pruning algorithm and the ATUMICS method, aiming to optimize decision tree evaluation processes accuracy. without compromising result transformation of the traditional congklak game into a digital format is designed to preserve and introduce Indonesian cultural heritage through an interactive and educational medium. Software quality testing results indicate that the game achieves an 81.9% success rate in usability, categorized as "Excellent." Positive user feedback suggests that the game not only provides entertainment but also serves as an effective educational tool, supported by AIdriven gameplay that is dynamic and challenging. The primary contribution of this research lies in the development of technology for cultural preservation through digital media, while also opening avenues for further research in AI applications within digital games. These findings are expected to play a significant role in the promotion and preservation of Indonesian cultural values in the digital era.

Keywords— Congklak, Artificial Intelligence, Alpha-Beta Pruning, Android Game Development, ATUMICS

I. PENDAHULUAN

Hal: 50-56

E-ISSN: 2962-7982

Permainan tradisional merupakan salah satu warisan budaya yang memiliki nilai historis dan nilai edukatif tinggi. Congklak merupakan salah satu permainan tradisional yang populer di indonesia dan beberapa negara asia. Permainan ini tidak hanya menghibur tetapi juga melatih keterampilan strategi dan juga berpikir kritis pemainnya [1]. Namun, di era digital ini, minat generasi muda terhadap permainan tradisional seperti congklak semakin berkurang [2].

Congklak memiliki makna sosial dan budaya yang signifikan, melampaui sekadar permainan. Permainan ini sering dimainkan oleh anak-anak dan wanita, mencerminkan nilai-nilai komunitas [1]. Selain itu, congklak sering digunakan sebagai alat pendidikan yang efektif, mengajarkan keterampilan berpikir strategis. Permainan ini juga membantu dalam pengajaran matematika dasar secara praktis. Dengan demikian, congklak berperan penting dalam pendidikan dan pelestarian nilai-nilai budaya [3].

Kemajuan teknologi telah membuka peluang besar dalam pengembangan permainan tradisional. Permainan yang dulunya dimainkan secara fisik kini dapat diadaptasi menjadi game digital yang lebih interaktif. Transformasi ini membuat permainan tradisional lebih menarik bagi generasi saat ini. Digitalisasi permainan tradisional juga membantu melestarikan budaya dalam format yang lebih modern. Dengan pendekatan ini, generasi muda dapat tetap terhubung dengan warisan budaya melalui media yang lebih sesuai dengan zaman mereka [4].

Salah satu teknik dalam AI yang dapat digunakan untuk meningkatkan kualitas permainan adalah algoritma alpha-beta pruning. Algoritma alpha-beta pruning merupakan sebuah teknik optimisasi dalam bidang kecerdasan buatan yang dirancang untuk meningkatkan efisiensi dalam pencarian solusi pada permainan berbasis pohon keputusan [5],seperti catur dan congklak. Algoritma ini merupakan penyempurnaan dari algoritma minimax, di mana proses evaluasi cabangcabang pohon yang tidak relevan dapat dihilangkan, sehingga mempercepat pengambilan keputusan tanpa mengorbankan akurasi hasil [6]. Alpha-beta pruning memanfaatkan batasan nilai alpha dan beta untuk menentukan cabang-cabang yang layak untuk dievaluasi lebih lanjut, sehingga mengurangi jumlah perhitungan yang diperlukan. Pemilihan algoritma ini

Hal: 50-56 E-ISSN: 2962-7982

didasarkan pada kemampuannya dalam mempercepat proses pencarian solusi pada permainan dengan kompleksitas tinggi, memungkinkan pengambilan keputusan yang lebih cepat dan tepat[6].

Penelitian sebelumnya oleh Benedictta Permatasari dan Hanny H. menunjukkan bahwa penerapan algoritma Alpha-Beta Pruning pada permainan Triple Triad berhasil meningkatkan tingkat kemenangan bot hingga 55%. Berdasarkan keberhasilan ini, peneliti memutuskan untuk menggunakan algoritma yang sama dalam pengembangan permainan congklak. Algoritma Alpha-Beta Pruning dipilih karena keunggulannya dalam mengurangi jumlah node yang dievaluasi selama proses pencarian, sehingga memungkinkan langkah optimal ditemukan lebih cepat. Penggunaan algoritma ini tidak hanya meningkatkan efisiensi permainan, tetapi juga memperkaya pengalaman bermain dengan tantangan yang lebih besar, yang dapat meningkatkan kepuasan dan keterlibatan pemain. Dalam konteks penelitian pengembangan game congklak dengan memanfaatkan kecerdasan buatan melalui algoritma Alpha-Beta Pruning bertujuan untuk melestarikan budaya tradisional melalui teknologi modern, sambil menciptakan pengalaman bermain yang lebih menantang dan menyenangkan. Dengan pendekatan inovatif ini, diharapkan generasi muda semakin tertarik terhadap permainan tradisional.

II. METODE PENELITIAN

Penerapan metode dalam pengembangan game congklak berbasis AI melibatkan proses sistematis, dimulai dengan mengidentifikasi permasalahan, yaitu menciptakan AI yang kompetitif. Studi literatur dilakukan untuk memahami algoritma seperti Alpha-Beta Pruning. Setelah data permainan dikumpulkan, perancangan antarmuka, struktur database, dan implementasi algoritma dilakukan. Pengujian memastikan metode berfungsi dengan baik, diakhiri dengan analisis kinerja AI untuk mengevaluasi efektivitas.

Gambar 1. Alur Proses Tahapan Penelitian

A. Permainan Congklak

Congklak merupakan suatu permainan tradisional dari indonesia yang dimainkan oleh 2 orang. Permainan ini biasa dimainkan menggunakan papan kayu yang berisikan 14 lubang, 2 lubang besar dan 12 lubang kecil. Ada juga biji congklak yang berisikan 7 biji di setiap lubangnya [1]. Permainan Congklak ini sma seperti mainan Congklak pada umunya.

Gambar 2. Tata Letak Permainan Congklak

B. Algoritma Alpha-Beta Pruning

Dalam kecerdasan buatan, algoritma Alpha-Beta Pruning adalah salah satu teknik optimisasi yang digunakan terutama untuk permainan berbasis pohon keputusan seperti catur, dam, dan congklak. Teknik ini adalah penyempurnaan dari algoritma minimax dan bertujuan untuk mengurangi jumlah simpul yang harus dievaluasi dalam pohon keputusan tanpa mengurangi akurasi hasil [7]. Algoritma Alpha-Beta Pruning digunakan untuk membuat keputusan untuk bot kecerdasan buatan saat membuat game Congklak. Seperti state (keadaan), event (kejadian), dan action (aksi). Fungsi tersebut diberikan kepada bot AI yang telah menentukan langkah terbaik dalam permainan berdasarkan evaluasi posisi biji pada papan permainan. Algoritma ini membantu mengurangi jumlah node yang perlu dievaluasi dalam pohon permainan, sehingga mempercepat pengambilan keputusan [7].

1) Penerapan Algoritma Alpha-Beta Pruning dalam Game Congklak.

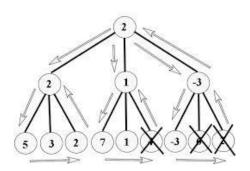
Bot AI dalam game Congklak memiliki beberapa state yaitu state "evaluation", state "pruning", dan state "decision". Berikut adalah penjelasan lebih rinci mengenai penerapan algoritma Alpha-Beta Pruning pada setiap state:

a) State "Evaluation"

Untuk mengetahui keadaan saat ini dari permainan, bot kecerdasan buatan berada dalam keadaan "evaluasi" saat game dimulai. Dalam keadaan ini, kecerdasan buatan menghitung nilai dari setiap langkah yang mungkin diambil untuk setiap biji yang ditemukan di papan permainan. Event: Game dimulai atau giliran bot AI tiba. Action: Bot AI mengevaluasi papan permainan untuk semua langkah yang mungkin diambil, menghitung nilai dari setiap langkah berdasarkan jumlah biji di lumbung masing-masing pemain.

b) State "Pruning"

Jika jumlah biji di lubang pemain melebihi jumlah tertentu atau dalam kondisi tertentu, bot kecerdasan buatan berpindah ke state "pruning". Dalam state ini, bot kecerdasan buatan menggunakan algoritma pemangkasan Alpha-Beta untuk memotong cabang-cabang yang tidak penting dari pohon permainan. Ini menunjukkan bahwa bot AI menghemat waktu dan sumber daya dengan menghindari mengevaluasi langkah-langkah yang tidak berdampak pada hasil akhir. Action: Bot AI melakukan Alpha-Beta Pruning untuk memangkas langkah yang tidak relevan, mengurangi jumlah langkah yang perlu dievaluasi lebih lanjut.


c) State "Decision"

Setelah proses pruning selesai, bot AI masuk ke state "decision", di mana ia menggunakan hasil dari evaluasi dan pruning untuk memilih langkah terbaik. Langkah yang dipilih adalah langkah yang memberikan keuntungan maksimal bagi

Hal: 50-56 E-ISSN: 2962-7982

bot AI atau kerugian minimal bagi lawan. Event: Proses pruning selesai. Action: Bot AI memilih langkah terbaik dari hasil evaluasi dan pruning, kemudian melakukan langkah tersebut di papan permainan

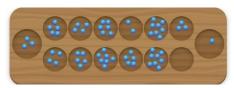
 Perhitungan algoritma alpha-beta pruning Jika β≤α, maka hentikan pencarian (pruning).

Gambar 3. Pohon Keputusan Alpha-Beta Pruning

Node Kiri (Subtree):

- a. Node Kiri (Subtree):
- b. Leaf Nodes: Nilai leaf nodes adalah 5, 3, 2.
- c. Maximizing Node: Pilih nilai maksimum, yaitu 5.
- d. *Minimizing* Node: Node yang terhubung ke 5 memiliki nilai minimum, yaitu 2 (5, 3, 2).
- e. Alpha (α) diperbarui menjadi 2.

Node Tengah (Subtree):

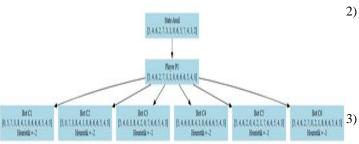

- a. Leaf Nodes: Nilai leaf nodes adalah 7 dan 1.
- b. Maximizing Node: Pilih nilai maksimum, yaitu 7.
- c. *Minimizing* Node: Node yang terhubung ke 7 memiliki nilai 1 (7, 1).
- d. Karena nilai ini lebih rendah dari nilai *Alpha* sebelumnya ($\alpha = 2$), tidak terjadi *pruning*.
- e. Beta (β) diperbarui menjadi 1.

Hasil akhirnya, *root* node memilih nilai optimal 2 dari *subtree* kiri, sementara pruning diterapkan untuk mencegah perhitungan yang tidak diperlukan di subtree kanan, sehingga meningkatkan efisiensi dalam pengambilan keputusan dengan *Alpha-Beta Pruning* [8].

3) Level

Penggunaan level dalam game sangat penting untuk menciptakan tantangan yang sesuai dengan kemampuan pemain. Game ini memiliki tiga tingkat kesulitan utama: easy, medium, dan hard, yang masing-masing menentukan seberapa jauh bot AI memikirkan langkah-langkah dalam permainan. Pada tingkat kesulitan easy, bot AI mempertimbangkan hingga 2 langkah ke depan, membuat permainan terasa lebih mudah dan sederhana. Pada tingkat medium, mempertimbangkan hingga 5 langkah, sehingga permainan menjadi lebih menantang dan kompleks. Sedangkan pada tingkat hard, bot AI menganalisis hingga 7 langkah ke depan, menawarkan tantangan yang sangat sulit dan memerlukan strategi yang lebih mendalam. Dengan variasi ini, setiap level memberikan pengalaman bermain yang sesuai dengan tingkat kesulitan yang dipilih oleh pemain.

Alpha-Beta Pruning adalah Teknik optimasi untuk algoritma Minimax yang digunakan dalam pencarian pohon keputusan [7]. Algoritma ini membantu memangkas cabang yang tidak perlu dievaluasi, sehingga mengurangi jumlah node yang harus dipertimbangkan. Definisi max nodes adalah Langkah pemain yang mencoba memaksimalkan nilai heuristik. Min nodes adalah Langkah yang mecoba meminimalkan nilai heuristic. Langkah- Langkah pada pohon keputusan. Berikut adalah state bot Congklak diproses dengan array:


Gambar 4. Kondisi Congklak Setelah beberapa kali putaran

Pada Gambar 2. Deretan lubang bagian atas dan lubang besar bagian kanan adalah lubang milik *bot*. Lubang bagian bawah dan lubang besar sebelah kiri adalah milik pemain. Pada Tabel 1. LBP adalah lubang besar pada pemain sedangkan LBC adalah lubang besar pada *bot*.

TABEL I Langkah Evaluasi Bot

Langkah	Distribusi	State Baru	LBP	LBC	Evaluasi heuristik
C1	C2 (1), C3 (1), C4 (1), C5 (1), C6 (1)	[0, 5, 7, 3, 8, 4, 1, 0, 6, 6, 6, 5, 4, 3]	3	1	-2
C2	C3 (1), C4 (1), C5 (1), C6 (1)	[5, 0, 7, 3, 8, 4, 1, 0, 6, 6, 6, 5, 4, 3]	3	1	-2
СЗ	C4 (1), C5 (1), C6 (1), LBC (1), P1 (1), P2 (1)	[5, 4, 0, 3, 8, 4, 2, 0, 7, 6, 6, 5, 4, 3]	3	2	-1
C4	C5 (1), C6 (1)	[5, 4, 6, 0, 8, 4, 1, 0, 6, 6, 6, 5, 4, 3]	3	1	-2
C5	C6 (1), LBC (1), P1 (1), P2 (1), P3 (1), P4 (1), P5 (1)	[5, 4, 6, 2, 0, 4, 2, 1, 7, 6, 6, 5, 4, 3]	3	2	-1
C6	LBC (1), P1 (1), P2 (1)	[5, 4, 6, 2, 7, 0, 2, 1, 8, 6, 6, 5, 4, 3]	3	2	-1

Berdasarkan evaluasi di atas, langkah terbaik untuk *bot* adalah langkah yang memaksimalkan keuntungan di LBC (Lubang Besar Bot). Langkah terbaik untuk *bot* adalah C3, C5 dan C6, karena Langkah- Langkah tersebut memiliki Evaluasi *heuristic* tertinggi yaitu -1. Dengan nilai -1 menguntukan untuk meningkatkan LBC. Berikut adalah pohon keputusannya.

Gambar 5. Pohon Keputusan

Algoritma Alpha-Beta Pruning merupakan metode pencarian dengan pendekatan Depth First Search (DFS) yang memetakan data dalam struktur pohon (tree). Tingkat kedalaman pencarian pada setiap simpul (node) ditentukan berdasarkan nilai heuristik yang melekat pada simpul tersebut. Pada algoritma ini, terdapat dua parameter utama, yaitu nilai alpha dan beta. Nilai alpha merepresentasikan nilai heuristik untuk bot, sementara nilai beta menggambarkan nilai heuristik untuk pemain. Ekspansi simpul dilakukan berdasarkan aturanaturan yang telah ditentukan (Rule-Based). Pseudocode untuk Algoritma Alpha-Beta Pruning adalah sebagai berikut.

```
function alphaBeta(node, depth, alpha, beta, maximizingPlayer):
   if depth == 0 or node is a terminal node
       return the heuristic value of node
   if maximizingPlayer:
       maxEval =
       for each child of node:
           eval = alphaBeta(child, depth - 1, alpha, beta, false)
           maxEval = max(maxEval, eval)
           alpha = max(alpha, eval)
           if beta <= alpha:
       return maxEval
   else
       minEval = ∞
       for each child of node:
           eval = alphaBeta(child, depth - 1, alpha, beta, true)
           beta = min(beta, eval)
           if beta <= alpha
        return minEval
```

Gambar 6. Pseuducode Algoritma Alpha-Beta Pruning

C. Metode ATUMICS

Peneliti mengembangkan game congklak menggunakan metode transformasi model ATUMICS, yang didukung oleh beberapa tahapan observasi dan studi literatur. Dari kedua tahapan ini, penulis menemukan solusi, yaitu konsep perancangan game congklak yang memberikan wawasan dan nilai edukasi kepada pemain. Metode ATUMICS adalah singkatan dari Artefact, Technique, Utility, Material, Icon, Concept, Shape. Prinsip utama metode ATUMICS adalah tentang pengaturan, kombinasi, integrasi, atau campuran antara unsur-unsur dasar tradisi dengan modernitas [9]. Metode ini digunakan untuk menggabungkan unsur-unsur budaya tradisi dengan unsur-unsur budaya kontemporer, dengan mempertahankan atau menghilangkan beberapa nilai, sehingga konsep game yang dibuat menjadi lebih baru.

1) *Artefact* (A), mengacu pada objek yang merupakan pusat dari penelitian ini, yaitu permainan congklak.

2) Technique (T), teknik menjelaskan mengenai segala jenis pengetahuan teknik, seperti teknik pembuatan, teknik produksi, atau bagaimana akhirnya artefak terbentuk baik melalui proses, sejarah, maupun hal-hal lain yang mempengaruhinya. Teknik berarti juga teknologi, yang mengacu pada semua sarana dan proses dalam mewujudkan memanfaatkan potensi yang ada.

E-ISSN: 2962-7982

Hal: 50-56

- Utility (U), utilitas digunakan sebagai alat fungsional untuk suatu benda. Melihat dari pengertian semantik, utilitas atau fungsi memiliki dua pengertian yaitu dalam konteks kegunaan dan konteks produk/benda. Sebagai contoh, dalam konteks produk/benda, congklak berfungsi sebagai permainan tradisional yang dimainkan dengan bijibijian atau kerikil, dan dalam konteks kegunaan lainnya, congklak merupakan sarana edukasi untuk melatih kecerdasan dan strategi.
- 4) Material (M), istilah material mengacu pada setiap bentuk fisik dari hal-hal yang dapat dibuat. Dalam konteks game, material bisa merujuk pada desain visual, animasi, dan komponen digital lainnya yang digunakan untuk menciptakan permainan congklak yang menarik.
- 5) *Icon* (I), ikon dalam penelitian ini menunjuk kepada bentuk-bentuk simbolis yang dapat bersumber dari elemen-elemen tradisional permainan congklak, seperti papan congklak, biji congklak, dan ornamen khas yang digunakan dalam desain game.
- 6) Concept (C), pemahaman konsep mengacu pada faktor-faktor yang melatarbelakangi terbentuknya suatu objek. Konsep dalam permainan congklak dapat mencakup strategi bermain, aturan permainan, dan nilai-nilai yang terkandung di dalamnya, seperti kerjasama, kecerdasan, dan budaya.
- 7) Shape (S), shape mengacu pada bentuk, performa, dan sifat visual dan fisik dari suatu objek. Dalam game congklak, shape meliputi desain visual papan congklak, biji-bijian, dan antarmuka pengguna yang menarik.

Gambar 7. Proses Transformasi Permainan Tradisional Permainan Congklak Menjadi Permainan Congklak Digital

III. HASIL DAN PEMBAHASAN

Setelah tahap implementasi, pengembangan *game* Congklak dilanjutkan dengan peroses pengujian. Tahap pengujian adalah langkah penting untuk memastikan aplikasi berfungsi sesuai spesifikasi. Metode *Black Box* digunakan untuk memvalidasi fungsionalitas berdasarkan input dan output tanpa memeriksa kode internal. Selain itu, kuesioner disebarkan kepada pemain untuk mengumpulkan data tentang pengalaman pengguna dan kualitas permainan.

Hal: 50-56 E-ISSN: 2962-7982

A. Hasil Pengujian

Hasil pengujian menunjukkan bahwa penggunaan *level* dalam *game* berhasil menciptakan tantangan yang sesuai dengan kemampuan pemain, dengan variasi tingkat kesulitan yang ditentukan oleh parameter *maxdepth*. Pada tingkat kesulitan *easy* (*maxdepth* = 2), permainan memberikan pengalaman yang sederhana dan mudah. Tingkat *medium* (*maxdepth* = 5) meningkatkan kompleksitas dan tantangan, sementara tingkat *hard* (*maxdepth* = 7) menawarkan tantangan yang sangat sulit dan membutuhkan strategi lebih mendalam. Variasi *maxdepth* ini memastikan bahwa setiap *level* memberikan pengalaman bermain yang sesuai dengan tingkat keterampilan pemain.

Pada *level easy*, pengujian dimulai dengan proses perhitungan kemungkinan langkah terbaik serta penilaian nilai *heuristik*. Pada tahap ini, pencocokan dilakukan secara manual dengan membandingkan hasil perhitungan sistem dengan hasil perhitungan manual. *bot* pada level ini akan menghitung dua langkah terbaik ke depan, sehingga ekspansi dilakukan terhadap node sebanyak dua kali. Karena hanya dilakukan ekspansi node sebanyak dua kali, komputer menghasilkan nilai perhitungan kemungkinan yang sama. Dalam algoritma yang digunakan, jika node memiliki nilai yang sama, maka node yang pertama kali dihitung akan dipilih.

Pada *level medium*, pengujian dilakukan dengan pendekatan serupa, namun *bot* akan memprediksi hingga lima langkah ke depan. Hal ini menyebabkan komputer melakukan ekspansi node sebanyak lima kali, yang menghasilkan variasi strategi dalam permainan congklak yang lebih beragam dibandingkan dengan *level easy*. Dengan lebih banyaknya langkah yang dihitung, *bot* dapat mempertimbangkan lebih banyak kemungkinan, sehingga strategi yang digunakan pun menjadi lebih kompleks.

Pada *level hard*, pengujian dilakukan dengan memperhitungkan tujuh langkah ke depan, yang menghasilkan ekspansi node sebanyak tujuh kali. Variasi strategi yang dihasilkan jauh lebih banyak, dan *bot* pada *level* ini cenderung menghindari langkah-langkah yang dapat menyebabkan biji congklak miliknya jatuh ke lubang lawan. Fokus utama *bot* adalah menjaga agar biji congklak tetap berada di wilayahnya sendiri, dengan strategi yang lebih terfokus pada pertahanan dan perlindungan biji congklak.

TABEL II HASIL PENGUJIAN BOT PADA PEMAIN

Level	1	2	3	4	5	Menang
Easy	О	О	О	X	О	4
Medium	X	-	О	X	О	2
Hard	X	О	X	X	О	2

Pada tabel 2, terdapat tanda "O", "-", dan "X". Tanda "O" berarti menang, tanda "-" berarti seri, dan tanda "X" berarti kalah. Berdsarakan table 1, bisa dilihat perbedaan setiap *level* yang tertera.

Pengujian *Black Box* pada game Congklak memastikan bahwa setiap fungsi beroperasi sesuai spesifikasi tanpa memeriksa kode sumber. Metode ini menilai kinerja berdasarkan input dan output untuk memastikan fungsi utama, seperti pergerakan biji dan penentuan pemenang, berfungsi

dengan benar. Tabel berikut merangkum hasil pengujian, yang menentukan apakah game siap diluncurkan atau perlu perbaikan.

TABEL III HASIL PENGUJIAN

HASIL PENGUJIAN								
Pengujian	Hasil	Kesimpulan						
Pengujian menampilkan tampilan menu utama	Game dapat menampilkan main menu saat game dimulai	Berhasil						
Pengujian tombil start	Game menampilkan <i>options</i> panel	Berhasil						
Pengujian tombol Tutorial	Game menampilkan torial panel	Berhasil						
Pengujiann tombol setting	Game menampilkan setting panel	Berhasil						
Pengujian tombol exit	Keluar dari game	Berhasil						
Pengujian tombol Easy pada options panel	Game menampilkan gameplay	Berhasil						
Pwngujian tombol medium pada options panel	Game menampilkan gameplay	Berhasil						
Pengujian tombol easy pada options panel	Game menampilkan gamplay	Berhasil						
Pengujian tombol close pada options panel	Game Kembali ke main menu	Berhasil						
Pengujian tombol next pada tutoral panel 1	Game menuju ke tutorial panel 2	Berhasil						
Pengujian <i>back</i> button pada <i>tutorial</i> panel 2	Game menuju ke tutoral panel 1	Berhasil						
Pengujian tombol close pada tutorial panel1	Game menuju ke main menu	Berhasil						
Pengujian tombol mute/ unmute music pada setting panel	Music berhenti	Berhasil						
Pengujian tombol mute/ unmute Sfx	Sfx berhenti	Berhasil						
Pengujian tombol close pada setting panel	Game Kembali ke main menu	Berhasil						
Pengujian tombol lubang pada gameplay	Biji teraambil	Berhasil						
Pengujian <i>movehand</i> pada <i>gameplay</i>	Biji teruarai satu persatu kelubang berikutnya	Berhasil						
Pengujian indicator text tingkat kesulitan	Indicator text berganti dengan tingkat kesulitan yang dipilih.	Berhasil						
Pengujian tombol back pada gameplay	Game Kembali ke main menu	Berhasil						
Pengujian indicator turn	memunculkan <i>pop up</i> turn saat berganti pemain	Berhasil						
Pengujian panel gameover	menampilkan game over panel	Berhasil						
Pengujian tombol replay	Game mnrgulang gameplay	Berhasil						
Pengujian tombo menu	Game menuju ke menu utama	Berhasil						

B. Analisis Pengujian

Analisis pengujian dalam game bertujuan mengevaluasi kinerja, kualitas, dan pengalaman pengguna. Proses ini meliputi pengumpulan data dari pengujian fungsionalitas,

Hal: 50-56 E-ISSN: 2962-7982

kinerja, dan antarmuka pengguna untuk mengidentifikasi bug dan masalah. Hasil analisis dirangkum dalam laporan dengan rekomendasi perbaikan untuk memastikan game berjalan lancar dan memberikan pengalaman bermain yang memuaskan.

TABEL IV PERTANYAAN KUESIONER

Pertanyaan
Apakah <i>game</i> ini mudah dimengerti? Apakah tingkat kesulitan <i>game</i> ini sangat sulit?
Apakah anda merasa kesulitan dalam bermain game ini?
Apakah menurut anda game ini membosankan?
Apakah desain game menarik?
Apakah anda puas dengan pengalaman bermain game ini?
Apakah game ini berjalan lanjar pada perangkat anda?

Selanjutnya merupakan tabel jawaban kuesioner,berikut merupakan jawaban kuesioner yang digunakan untuk perhitungan. Dengan ketentuan sebagai berikut.

Sangat Setuju	=	5
Setuju	=	4
Biasa saja	=	3
Tidak setuju	=	2
Sangat tidak setuju	=	1

TABEL V HASIL KUESIONER

Nama	P1	P2	Р3	P4	P5	P6	P7	Jml
Elza	5	5	5	5	5	5	5	35
Rafli Ary Ramadhan	5	3	3	3	3	3	3	23
Safa aulia zahra	4	3	4	4	3	3		21
Marcella Azhary	5	5	4	3	3	5	5	30
Zarah Aghniya Sativa	5	5	5	5	5	5	5	35
Septian Aji Saputra	4	4	4	5	5	5	4	31
ananda salsabila afifah	5	4	4	3	4	4	4	28
Rafika	5	4	4	4	5	5	5	32
firda n s	4	3	3	4	3	3	4	24
Fadil Fauzan	3	3	4	3	3	4	2	22
Risky Ramadhani	4	4	4	4	4	4	4	28
Mila Yuliani	4	3	4	4	4	4	4	27
Nurul nabila	5	3	4	3	5	5	5	30
Tsabitha Salwanastiti	4	5	5	4	4	4	5	31
Muhammad Jibran Abdurrahman	5	4	4	4	4	4	5	30
Muhamad Givari Ramadan	5	3	4	5	5	5	5	32
Annisa kartika	4	4	4	2	4	4	4	26
Aura mutiarani shafa nabila	4	3	4	4	4	4	5	28
anindya diva	4	3	3	4	4	4	4	26
Mulyana N	5	5	5	3	4	4	5	31
Hawa	3	3	2	4	4	4	3	23
Aqilah Nur Sabrina	5	5	5	3	4	5	5	32

Galih Muhammad Trisnandaru	5	5	5	5	5	5	5	35
Alamsyah Nur Alif	5	4	4	5	4	5	5	32
atik nurfiana	3	3	4	3	4	5	5	27
Dhiya Naufal Pramoedya	4	3	3	4	5	4	4	27
Dyah Ayu Nurkholidah	5	3	5	5	4	5	5	32
anggita	4	3	3	4	5	5	4	28
Zahria Ramadhani	4	2	4	4	3	4	3	24
Adrian Bagus	4	4	5	3	4	5	5	30
Jumlah keseluruhan							860	

Perhitungan persamaan [10].

$$Skor = \frac{860}{1050} \times 100\% = 81,9\%$$

Tabel 3 menampilkan tabel persentase keberhasilan. Berdasarkan hasil pengujian kualitas perangkat lunak yang dibangun dengan mengacu pada karakteristik *usability*, *game* ini mendapatkan persentase keberhasilan sebesar 81,9%. Nilai yang diperoleh tersebut kemudian dikonversi berdasarkan skala konversi pengujian. Dari hasil ini, dapat disimpulkan bahwa persentase yang diperoleh menunjukkan bahwa kualitas perangkat lunak dari segi karakteristik usability memiliki skala "Sangat Baik".

IV. KESIMPULAN

Penelitian ini berhasil mengimplementasikan Algoritma Alpha-Beta Pruning untuk meningkatkan kecerdasan buatan dalam game congklak, serta menggunakan metode ATUMICS untuk mentransformasikan permainan tradisional menjadi game digital yang edukatif dan mempertahankan nilai-nilai budaya Indonesia. Pengujian menunjukkan tingkat usability sebesar 81,9%, dengan tanggapan positif dari pengguna yang mengakui kombinasi edukasi dan hiburan yang efektif. Untuk pengembangan selanjutnya, disarankan untuk mengeksplorasi teknik kecerdasan buatan lain, menambah fitur multiplayer online, dan mengintegrasikan konten edukatif tentang budaya guna memperkaya pengalaman bermain dan edukasi.

REFERENSI

- [1] F. Q. Annastasia, Congklak. Kanak, 2023.
- [2] E. Rustan and A. Munawir, "Eksistensi Permainan Tradisional Edukatif Pada Generasi Digital Natives," JPNK, vol. 5, no. 2, hlm. 181–196, 2020.
- [3] R. J. Irawan, "Studi literatur: Efektivitas modifikasi dalam permainan tradisional pada eksistensi permainan anak era generasi z," *Jurnal Kesehatan Olahraga*, vol. 10, no. 01, pp. 129–136, 2022
- [4] P. N. Fitriyah, D. P. Salsabilla, and S. N. Maulida, "Transformasi Permainan Tradisional Menjadi Game Online Di Era Kemajuan Teknologi Modern dan Dampaknya Pada Kehidupan Masyarakat," *Triwikrama: Jurnal Ilmu* Sosial, vol. 2, no. 6, pp. 124–134, 2023.
- [5] A. Garg and A. Shrotriya, "Chess Board: Performance of Alpha–Beta Pruning in Reducing Node Count of Minimax Tree," Smart Trends in Computing and Communications (SMART 2023), 2023, pp. 661–671.
- [6] R. Sahay, "Comparative analysis of minmax algorithm with alpha-beta pruning optimization for chess engine," *International Journal of Advances in Engineering and Management (IJAEM)*, vol. 5, no. 2, pp. 689-694, 2023.

- Hal: 50-56 E-ISSN: 2962-7982
- [7] J. Tao, G. Wu, and X. Pan, "Design and improvement of the pruning algorithm of the Chinese chess in the computer games," *J. Eng. (Stevenage)*, vol. 2020, no. 13, pp. 426–428, 2020.
- [8] B. D. Permatasari, H. Haryanto, E. Z. Astuti, and E. Dolphina, "Peningkatan Kemenangan Non-Playable Character dalam Permainan Triple Triad Menggunakan Alpha-Beta Pruning," *Jurnal Komputasi*, vol. 10, no. 1, pp. 95-104, 2022.
- [9] W. C. Turang and D. A. O. Turang, "Pengembangan desain tas wanita berbahan rumput Purun menggunakan metode ATUMICS," PRODUCTUM Jurnal Desain Produk (Pengetahuan dan Perancangan. Produk), vol. 4, no. 1, pp. 33–42, 2021.
- [10] M. H. Syuaibi, M. Mahmudi, and K. Auliasari, "Perancangan Dan Implementasi Metode Fsm (Finite State Machine) Pada Game Military Defence 2d Berbasis Android," *JATI (Jurnal Mahasiswa Teknik Informatika*), vol. 7, no. 4, pp. 2349–2357, 2023.
- [11] B. Dinda Permatasari, H. Haryanto, E. Zuni Astuti, and E. Dolphina, "Peningkatan Kemenangan Non-Playable Character dalam Permainan Triple Triad Menggunakan Alpha-Beta Pruning," *Jurnal Komputasi*, vol. 10, no. 1, pp. 95-104, 2022.