Optimasi Penggunaan Enkripsi Homomorfik untuk Keamanan dan Privasi Data Kesehatan (Studi Literatur)
DOI:
https://doi.org/10.70309/ticom.v13i2.139Keywords:
Enkripsi homomorfik, Privasi data, Federated Learning, IoMT, BlockchainAbstract
Digitalisasi dalam sektor kesehatan menghadirkan tantangan baru terkait privasi dan keamanan data medis. Artikel ini mengulas optimalisasi penggunaan enkripsi homomorfik (HE) untuk melindungi data kesehatan dalam kerangka Federated Learning (FL) dan Internet of Medical Things (IoMT). Kajian ini memaparkan tantangan implementasi HE, seperti konsumsi daya tinggi dan keterbatasan perangkat IoT, serta solusi untuk mengatasi kendala tersebut. Hasil tinjauan literatur menunjukkan bahwa inovasi algoritma HE hemat daya dan integrasi dengan teknologi blockchain mampu meningkatkan efisiensi dan keamanan dalam sistem kesehatan berbasis IoT. Studi ini menekankan pentingnya pengembangan teknologi enkripsi yang efisien guna mendukung interoperabilitas data medis dan meningkatkan kepercayaan publik terhadap sistem kesehatan digital
References
Nidhi, B. S. Rawat, A. Srivastava, and N. Garg, “Health Monitoring Transforming Using IoT: A Review,” in 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), IEEE, Feb. 2024, pp. 17–22.
M. Ali, F. Naeem, M. Tariq, and G. Kaddoum, “Federated Learning for Privacy Preservation in Smart Healthcare Systems: A Comprehensive Survey,” IEEE J Biomed Health Inform, vol. 27, no. 2, pp. 778–789, 2023.
Vinola. C, G. Premi, P. Solainayagi, C. Srinivasan, and P. G. Kuppusamy, “Data Privacy and Confidentiality in Healthcare Applications of IoT-Enabled Wireless Sensor Networks,” in 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon), IEEE, 2023, pp. 610–614.
S. K. Lo et al., “Toward Trustworthy AI: Blockchain-Based Architecture Design for Accountability and Fairness of Federated Learning Systems,” IEEE Internet Things J, vol. 10, no. 4, pp. 3276–3284, 2023.
B. C. Das, M. Hadi Amini, and Y. Wu, “Privacy Risks Analysis and Mitigation in Federated Learning for Medical Images,” in 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2023, pp. 1870–1873.
J. Park and H. Lim, “Privacy-Preserving Federated Learning Using Homomorphic Encryption,” Applied Sciences, vol. 12, no. 2, p. 734, 2022.
H. M. Reddy, S. P C, and S. Sankaran, “On the Feasibility of Homomorphic Encryption for Internet of Things,” in 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), IEEE, 2022, pp. 1–6.
M. Matsumoto and M. Oguchi, “Speeding Up Encryption on IoT Devices Using Homomorphic Encryption,” in 2021 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE, 2021, pp. 270–275.
M. Qi, Z. Wang, Q.-L. Han, J. Zhang, S. Chen, and Y. Xiang, “Privacy Protection for Blockchain-Based Healthcare IoT Systems: A Survey,” IEEE/CAA Journal of Automatica Sinica, vol. 11, no. 8, pp. 1757–1776, 2024.
W. F. Shah, “Preserving Privacy and Security: A Comparative Study of Health Data Regulations - GDPR vs. HIPAA,” Int J Res Appl Sci Eng Technol, vol. 11, no. 8, pp. 2189–2199, 2023.
P. Yao, H. Wang, C. Zheng, J. Yang, and L. Wang, “Efficient Federated Learning Aggregation Protocol Using Approximate Homomorphic Encryption,” in 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), IEEE, 2023, pp. 1884–1889.
K. Shivdikar et al., “Accelerating Polynomial Multiplication for Homomorphic Encryption on GPUs,” in 2022 IEEE International Symposium on Secure and Private Execution Environment Design (SEED), IEEE, Sep. 2022, pp. 61–72.
B. Wang, H. Li, Y. Guo, and J. Wang, “PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data,” Appl Soft Comput, vol. 146, p. 110677, 2023.
H. Aissaoua, A. Laouid, M. Kara, A. Bounceur, M. Hammoudeh, and K. Chait, “Integrating Homomorphic Encryption in IoT Healthcare Blockchain Systems,” Ingénierie des systèmes d information, vol. 29, no. 5, pp. 1667–1677, 2024.
L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, and U. Ghosh, “Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System,” IEEE Trans Netw Sci Eng, vol. 10, no. 5, pp. 2864–2880, 2023.